If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2-8r-5=0
a = 3; b = -8; c = -5;
Δ = b2-4ac
Δ = -82-4·3·(-5)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{31}}{2*3}=\frac{8-2\sqrt{31}}{6} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{31}}{2*3}=\frac{8+2\sqrt{31}}{6} $
| 0=240-20x | | 5t^2-49t-10=0 | | 5t^2~49t-10=0 | | 2-3x=12+7x | | 5/6+x=1/3 | | 20x-5x=15x | | 2x+7+1=10-x/5 | | (6x-4)^1/2=0 | | x*x-x=156 | | 4x+2/2=10+5 | | 14=2(b-6) | | F=(9÷5)(c)+32 | | 3y^2+32y-11=0 | | (4x-5)(4x+3)=902 | | -2t+8=-1 | | 10x=118 | | u/12.8=2 | | 2x+57=85 | | v/12+11=41 | | x/7=17.92 | | -5w+-3w=8 | | 3(x-1)=5x+50 | | k÷3-5=34 | | -x²+2x+3=0 | | ⅔x=12 | | 4g^2+11g+6=0 | | x/9+69=180 | | 5v-14=36 | | 4s+3s=7 | | -2(5x–6)=16 | | x2-11x-12=0 | | 10s-9s=3 |